Extensions 1→N→G→Q→1 with N=C22 and Q=C4xC8

Direct product G=NxQ with N=C22 and Q=C4xC8
dρLabelID
C22xC4xC8128C2^2xC4xC8128,1601

Semidirect products G=N:Q with N=C22 and Q=C4xC8
extensionφ:Q→Aut NdρLabelID
C22:1(C4xC8) = C4xC22:C8φ: C4xC8/C42C2 ⊆ Aut C2264C2^2:1(C4xC8)128,480
C22:2(C4xC8) = C8xC22:C4φ: C4xC8/C2xC8C2 ⊆ Aut C2264C2^2:2(C4xC8)128,483

Non-split extensions G=N.Q with N=C22 and Q=C4xC8
extensionφ:Q→Aut NdρLabelID
C22.1(C4xC8) = C23.19C42φ: C4xC8/C42C2 ⊆ Aut C2264C2^2.1(C4xC8)128,12
C22.2(C4xC8) = C42.2Q8φ: C4xC8/C42C2 ⊆ Aut C2264C2^2.2(C4xC8)128,13
C22.3(C4xC8) = M5(2):C4φ: C4xC8/C42C2 ⊆ Aut C2264C2^2.3(C4xC8)128,109
C22.4(C4xC8) = C82:C2φ: C4xC8/C42C2 ⊆ Aut C2264C2^2.4(C4xC8)128,182
C22.5(C4xC8) = C4xM5(2)φ: C4xC8/C42C2 ⊆ Aut C2264C2^2.5(C4xC8)128,839
C22.6(C4xC8) = C23.21C42φ: C4xC8/C2xC8C2 ⊆ Aut C2232C2^2.6(C4xC8)128,14
C22.7(C4xC8) = C42.3Q8φ: C4xC8/C2xC8C2 ⊆ Aut C2264C2^2.7(C4xC8)128,15
C22.8(C4xC8) = M4(2).C8φ: C4xC8/C2xC8C2 ⊆ Aut C22324C2^2.8(C4xC8)128,110
C22.9(C4xC8) = C8xM4(2)φ: C4xC8/C2xC8C2 ⊆ Aut C2264C2^2.9(C4xC8)128,181
C22.10(C4xC8) = C16o2M5(2)φ: C4xC8/C2xC8C2 ⊆ Aut C2264C2^2.10(C4xC8)128,840
C22.11(C4xC8) = C2.C82central extension (φ=1)128C2^2.11(C4xC8)128,5
C22.12(C4xC8) = C16:5C8central extension (φ=1)128C2^2.12(C4xC8)128,43
C22.13(C4xC8) = C8:C16central extension (φ=1)128C2^2.13(C4xC8)128,44
C22.14(C4xC8) = C22.7M5(2)central extension (φ=1)128C2^2.14(C4xC8)128,106
C22.15(C4xC8) = C2xC8:C8central extension (φ=1)128C2^2.15(C4xC8)128,180
C22.16(C4xC8) = C2xC22.7C42central extension (φ=1)128C2^2.16(C4xC8)128,459
C22.17(C4xC8) = C2xC16:5C4central extension (φ=1)128C2^2.17(C4xC8)128,838

׿
x
:
Z
F
o
wr
Q
<